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Abstract. The traditional representation of the populations used in evolutionary 
algorithms raises two types of problems: the loss of genetic diversity during the 
evolutionary process and evaluation of redundant individuals. In [11, 12] the 
authors propose a new formal model (PLATO) for multiset representation of 
individuals and their populations which applied to heuristic algorithms, 
minimizes the problems identified above. This paper presents a computational 
representation of populations based in multisets, and the adaptation of the 
genetic algorithm to deal with this type of representation, the Multiset Genetic 
Algorithm (MGA). A new operator called rescaling is developed as well as a 
metric to measure genetic diversity. The standard genetic algorithm is applied 
to some types of problems using the standard and the new type of populations 
and empirical results shows the genetic diversity is increased and the number of 
individuals evaluated is decreased as expected. 
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1   Introduction 

Evolutionary algorithms (EA) are stochastic methods that mimic the process of 
biological evolution and have become popular tools for search, optimization, machine 
learning and design problems [1]. When applying these algorithms to complex 
problems where the search space is complex the most frequent difficulty is the 
premature convergence of the algorithm due to the lack of genetic variety. Individuals 
with better fitness propagate their genes in successive generations leading to a 
premature convergence [2]. Genetic diversity is essential to the evolutionary process, 
and without it the EA stops at least good solutions especially in problems that have 
more than one solution (multi-modal optimization) or involve simultaneous 
objectives, multi-objective optimization. 

Several strategies have been proposed to maintain genetic diversity at different 
stages in the evolutionary process: Selection with weak pressure to fitness like 
uniform or tournament selection methods; Reproduction promoting the attraction 
between elements of different individuals or using other reproductive intelligent 
operators; Mutation with several adaptive operators; Substitution: promoting the 



replacement of individuals with similar genotypes but better fitness [2, 3, 4, 5, 6, 7, 
21]. EA have revealed potential to reach good balances in order to find a good set of 
solutions with limited computational power. The maintenance of many good solutions 
in parallel is desirable and good algorithms have been developed for the clearing, 
clustering, crowding, fitness sharing and speciation [19]. 

The efficacy of the EA is directly related to the size of the population. However, in 
some applications, the evaluation of a large number of individuals is computationally 
expensive and delays the evolutionary process. To minimize this problem we find in 
literature some solutions: saving the objective value of individuals in the databases, 
estimating the ability of individuals using similar systems and prediction of fitness 
[9,10]. 

All strategies above are improvements to the original algorithm, which require the 
redefinition of the operators and all have an increased computational cost. In [11, 12], 
the authors introduce a new formal model using the concept of multiset for the 
representation of populations. This model allows the resolution of two problems listed 
above: maintaining the genetic diversity and avoiding superfluous evaluations. In [15] 
the authors show a software prototype, based in these ideas and applied to Genetic 
Algorithms (GA). This paper describes the adaptation of the GA to a multiset based 
population, also introducing a new operator called rescaling. This variant is called 
Multiset Genetic Algorithm (MGA). Empirical results show that the MGA produces 
higher genetic diversity and smaller number of evaluations than the same GA using 
simple population (SP). The diversity was calculated by two measures of genetic 
diversity. 

2   Multisets and Multipopulations 

A multiset is a collection of elements which may appear repeated. The number of 
times an element occurs in a multiset is called its multiplicity. The cardinality of a 
multiset is the sum of the multiplicities of its elements [13].  We can define a multiset 
as a set of ordered pairs <n,e> where n is the cardinality of the element e. In this 
definition the set {a,a,a,b,b,c} has an equivalent representation in multiset 
{<3,a>,<2,b>,<1,c>}. 

EAs are based on populations of individuals in the form of collections. In the 
traditional representation it is common to have repeated individuals within the 
population (Table 1). This can be efficiently represented by a multiset (Table 2). 
Multipopulations (MP) are populations where the individuals are represented by 
ordered pairs <n,g> where n is the number of copies of the genome g. To this ordered 
pair we call multiindividual (MI), and a MP is a set of MIs with number of copies 
greater than zero. The set of g in a MP is called the support of the MP. In case of 
Table 2 we have a support set with four elements (notice that all of them have 
different genotypes).  

Populations are dynamic collections where individuals are inserted, removed and 
searched. To implement MP we must redefine these three operations in the traditional 
data structure to support MI. 



• Search - an MP is a set of individuals, grouped in MI, which can be 
indexed. The index of an individual is defined as a range from the sum of 
the multiplicity of all previous MI to this value added of the own 
multiplicity (Table 3). Searching an individual is searching one index in 
the population. This index is very important to maintain the equivalence 
between the MPs and the normal populations (SP) necessary for 
performance comparisons. 

 

Table 1.  Population with 8 individuals of 
the problem MaxOnes. 

Table 2.  Multi-Population equivalent of 
the population represented in Table 1. 

 
 
 

Table 3.  Indexing Multiindividuals in the Multipopulation of Table 2. 

Copies Genotype Fitness Indexes 
3 11111110 7 0,1,2 
2 11110000 4 3,4 
2 00001110 3 5,6 
1 00000010 1 7 

 
• Insert - when an individual is appended to the MP, the first operation is to 

check if there is already a MI with the same genotype; if true this 
operation increases the number of copies of the MI to incorporate the new 
individual, if false the individual is inserted in the population and the 
number of copies is one (Table 4). 

Table 4.  Append the individual “11111110” and “00000000” in the MP of the Table 3. 

Copies Genotype Fitness Indexes 
4 11111110 7 0,1,2,3 
2 11110000 4 4,5 
2 00001110 3 6,7 
1 00000010 1 8 
1 00000000 0 9 

Genotype Fitness 
11111110 7 
11111110 7 
11111110 7 
11110000 4 
11110000 4 
00001110 3 
00001110 3 
00000010 1 

Copies Genotype Fitness 
3 11111110 7 
2 11110000 4 
2 00001110 3 
1 00000010 1 



• Remove – the elimination of an individual of one MP is done 
decrementing the number of copies of the MI. If the number of copies decays 
to zero, the MI is removed from the data structure (Table 5). 

Table 5.  Remove the individual at the index 7 (“00001110”) and the individual “00000010” 
(index 8) in the MP of the table 4. 

Copies Genotype Fitness Indexes 
4 11111110 7 0,1,2,3 
2 11110000 4 4,5 
1 00001110 3 6 
1 00000000 0 7 

 
Appending and removing individuals in the MP produces one search for the 
individual genotype into the MP, incrementing the computational complexity to the 
evolutionary process. To minimize this issue the data structures to support MP must 
be efficient in search, not only to select individuals, but also to add and remove them 
from the MP. Random access is another important aspect for the implementation of 
some genetic operators. 

Genetic Diversity 

Genetic diversity is based on the Hamming distance between individual genotypes. 
This measure between two bit strings returns the number of bits that are different in 
the genotype representations. By applying the same principle to the entire population 
we can calculate the Hamming distance of an individual in relation to the population 
as the sum of Hamming distances between it and all the other elements of the 
population. The genetic diversity of the population is given by the sum of Hamming 
distances of the individuals that compose it. We define a measure called the genetic 
diversity consisting on a normalized form of the Hamming distance for binary strings. 
It can be efficiently computed as 
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where l is the number of bits of each individual, ki the number of ones of the allele i in 
the population and n the population size. The maximum diversity is 1.0 when the 
percentage of alleles for each gene is 50%, and the minimum diversity is 0.0 when all 
genes have the same value. This measure produces similar results to pop_diversity 
[20] but is computationally more efficient and is normalized to interval [0, 1]. 

Different alleles 

The number of different alleles in the population is another diversity measure, which 
calculates the amount of genes that are not fixed in the population [14]. This metric 



can measure the ability of a population to explore the search space through the 
recombination operator.  

The maximum diversity is obtained when the population has different alleles in all 
the genes and the minimum value is obtained when all the genes have the same value 
overall the population, which means all individuals are identical. 

Equation (2) shows the normalized form of the measure  
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where l is the number of bits of each individual and ai is zero if all the alleles of the 
gene i have the same value and one otherwise. 

3   Adaptation of the Genetic Algorithm to Multi-Populations  

The simple GA (SGA), when using the MP and the traditional operators, benefits 
automatically of the reduced number of evaluations and increased genetic diversity. 
The number of evaluations is decreased because they can evaluate many individuals 
at once (one multiindividual), and the genetic diversity of the population is increased 
because all the MI in the support set have different genotypes. 

The individuals with best fitness increase their number of copies in successive 
generations. If this number of copies is not controlled the benefits of the MP may be 
decreased due to the huge number of copies of the best individuals. We can adapt the 
common EA operators to this new representation, but a lighter intervention can be 
considered by just introducing a new operator. This will allow us to compare results 
of the SGA with the Multiset Genetic Algorithm (MGA). 

Rescaling 

To control the number of copies of the individuals we adapted the schema defined in 
[11, 12] and introduced a new operator in the genetic process: rescaling (Fig. 1). 
Rescaling is a population operator that changes the number of copies of a MI 
preventing it from taking over population. We divide the number of copies of each 
individual by a factor r and assign the num of copies to the smallest integer that is 
greater than the division. Fig. 2 shows the effect of the operator in a population of 128 
individuals of the problem Maxones over 250 generations. 

With the factor r equal to 1.0 the number of individuals grows in successive 
iteration. This is due to keep constant the number of MI in the population where the 
fittest individuals accumulate copies in the evolutionary process. Higher values of r 
stabilize the number of copies of good individuals. Experimental results show that the 
value of 1.5 to factor r it’s a good compromise between number of individuals and 
number of MI in the population. 

 



 

Fig. 1 . Optimization Algorithms Operators 

In the first steps of the evolution the number of individuals increases more slowly 
because there is no individual with greater fitness than the others, and the number of 
copies is small. 

  

Fig. 2 Effect of rescaling in the number of individuals in the population. 

4   Empirical study 

In our empirical results we use the MUGA simulator [15] to show the effect of MP in 
the evolutionary process in comparison to SP. To measure the effect of the MP in the 
evolutionary process we use standard GA operators to evolve the two types of 
populations: SGA – GA that evolve simple population and MGA – GA that evolve 
multipopulations. The parameters of the GA are equal for the two types of models and 
are displayed in Table 8.  
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Table 8. Parameters used for SGA and MGA except rescaling (only in MGA). 

Population size 128 individuals or multiindividuals 
Mate population size 128 individuals  
Selection Binary tournament  
Combination Crossover 1-cut point, probability =75% 
Mutation Bitwise mutation with probability =1% 
Replacement Binary tournament with no reposition 
Rescaling Factor = 1.5 
Iterations 2500 generations 

 
We use three functions to investigate the effect of MP: Royal Road Function R1 [16], 
Knapsack [20] and MZ1 [18]. We perform 64 runs for each problem. In each one a 
new random population is generated and assigned to both MGA and SGA. The results 
presented below are the arithmetic means of the runs performed. 

Royal Road Function R1 

This function is designed to investigate, in detail, schema processing and 
recombination [16]. It uses a 64 bit string. It is unimodal and the search space is 
organized in steps with constant size.  

  

Fig. 3 - Average of number of optima found 
by generation. 

Fig. 4 - Average of value of best individual 
found by generation. 

This function has one maximum and it is hard to discover with no genetic diversity. 
MGA found the solution 90.6% of the runs and SGA found the optimal solution 7.8% 
of the runs (Fig. 3, Fig. 4 ). Fig. 5 and Fig. 6 show the population diversity (different 
alleles and genetic diversity). The diversity of the SGA is good because the 
population does not converge and there are many local maxima. MGA has a higher 
diversity, explained by the constant size of the support set. This genetic diversity in 
SP eventually generates the best solution but more iterations are necessary. If we take 
all tests up to 2500 generations we notice the number of evaluations in MGA (22700) 
is lower than in SGA (29500) (Fig. 7). The number of individuals in MGA stabilizes 



in 166 after a few generations (Fig. 8). In the beginning of evolution the number of 
individuals increases because there are many local maxima with the same fitness. In 
each higher fitness plateau the number of local maxima decreases which leads to the 
stabilization of the number of individuals in a smaller value. 

 

  

Fig. 5 - Average of number of different alells 
of the population by generation. 

Fig. 6 - Average of genetic diversity by 
generation. 

  

Fig. 7 - Average of accumulated evaluations 
per generation. 

Fig. 8 - Average number of individuals by 
generation. 

Knapsack  

Knapsack is a well know NP-complete combinatorial optimization and we use it to 
show the effects in combinatorial optimization problems. We implement the problem 
presented in [20]. The maximum capacity is 50% of the total height and penalization 
is done by the linear function of [18]. 

Experimental results show that the problem has at least four maxima with the best 
value known of 1920:  

 00000111110100101100100101111010011010101111110111 



 00001111110100101100100101111010001010101111110111 
 00001110110100101100100101111110111010001111110111 
 00001111110100101100100101111010111010101110110111 

 

Fig. 9 - Average of number of optima found 
by generation. 

Fig. 10 - Average of value of best individual 
found by generation. 

The MGA always found four optimum solutions (Fig. 9) and the SGA found one 
optimum 67.1% of the runs. In both simulations a good solution is found. The mean 
of the best values for SGA is 1915.4 and for MGA is 1920 (the best known) (Fig. 10). 

  

Fig. 11 - Average of number of different 
alleles of the population by generation. 

Fig. 12 - Average of genetic diversity by 
generation. 

The number of different alleles (Fig. 11) and genetic diversity (Fig. 12) in SGA 
converge to zero while in MGA they converge to a good ratio: 41.9% of different 
alleles and 18.7% of genetic diversity. This lack of genetic diversity explains the 
difficulty of SGA to find optimum solutions. The number of evaluations is 10.8% 
higher in SGA and the number of individuals in MGA stabilizes in 226. The higher 
number of individuals is explained by the number of the optima found by the MGA. 



MZ1 

MZ1 [18, pp. 36] is a bidimensional function defined in a continuous space and we 
use it to show the effect of MP in numerical optimization based in real numbers coded 
in binary strings. The fitness function is described by equation 3. Variable x1 is 
defined in the interval -3.0 ≤ x1≤12.1 and coded by 18 bits and variable x2 is defined 
in the interval 4.1 ≤ x2≤5.8 and coded by 15 bits. 

)20sin()4sin(5.21),(1 222121 xxxxxxMZ ππ ++= . 
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Fig. 13 - Average of number of optima found 
by generation. 

Fig. 14 - Average of value of best individual 
found by generation. 

  

Fig. 15 - Average of number of different 
alleles of the population by generation 

Fig. 16 - Average of genetic diversity by 
generation 

We notice that the results of MGA in this problem are not as good as in the 
previous ones. Optimization of complex functions is difficult for SGA due to 
premature convergence of the population. In MGA we also notice premature 
convergence (Fig. 13 and Fig. 14), in spite of the constant population diversity (Fig. 
15 and Fig. 16). This is due to the fact that MGA converges to a local maximum and 
uses the genetic diversity to form a cluster around it. The number of individuals in the 



MP stabilizes in 338, which is a high number resulting from many MI with similar 
high fitness. 

5   Conclusion 

In this paper we present an implementation of GA with populations represented by 
multisets, named Multiset Genetic Algorithm (MGA). This model introduces a new 
operator called Rescaling, to allow a comparison between MGA and the Simple 
Genetic Algorithm (SGA). We performed experiments to determine an adequate value 
for the division factor parameter of the new operator. A metric called genetic 
diversity, implementing in an efficient way a normalized Hamming distance was 
proposed to evaluate the performance of the different models. 

We conducted a series of tests in different problems, to determine the behavior of 
the MGA during the evolutionary process and to compare the results with the SGA. 
The number of evaluations in MGA is lower than in SGA in all the tests. MGA has 
the largest genetic diversity in all situations. This helped to reach the optimal solution 
in Royal Road Function R1 and to find and maintain different optimal solutions in the 
knapsack problem. MGA in MZ1 problem did not get results as significant as in the 
other problems, but showed some directions to follow in the future. The cluster 
around a local maximum takes the entire genetic diversity through bits with little 
significance to the global optimum. The concept of multiindividual (MI) can be 
redefined with the incorporation of metrics that allow a single MI to represents similar 
genotypes instead of a single one. Some metrics are being study and will be subject to 
investigation in the near future. 

This work presents the impact of MGA in a optimization process using 
conventional genetic operators. The standard genetic operators could be redefined, 
and new ones can be developed take to advantage of the number of copies of the MI. 
Some operators have already been adapted and are present in MUGA[15]. In the 
future they will be subjected to analytical treatment to determine their efficiency. 

The use of multipopulations involves a computational effort grouping individuals 
in a MI. Efficient data structures that support efficient search and random access to 
the individuals will be researched to minimize the computational effort. 

The results of the experiences reinforce our conviction that a multiset 
representation of the population is a powerful way to preserve genetic diversity, to 
avoid superfluous evaluations and, therefore, to significantly improve the 
performance of GA. 

References 

1. Whitley, D.:An Overview of Evolutionary Algorithms: Pratical Issues and Common Pitfalls. 
Journal of Information and Software , 43:817-831. (2001) 

2. Theoretical analysis of diversity mechanisms for global exploration. Proceedings of the 10th 
annual conference on Genetic and evolutionary computation, pp 945-952 (2008)  



3. Amor, B.H.,Rettinger, A.:Intelligent Exploration for genetic Algorithms: using self-
organizing maps in evolutionary computation. Proceedings of the 2005 conference on 
Genetic and evolutionary computation, pp1531-1538. (2005) 

4. Cervantes, J., Stephens,C.R. : Rank based variation operators for genetic algorithms. 
Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp 
905-912 (2008) 

5. Cherba, M.D., Punch, W.: Crossover gene selection by spatial location. Proceedings of the 
8th annual conference on Genetic and evolutionary computation, pp 1111 - 1116 (2006) 

6. Hutter, M.:Fitness Uniform Selection to Preserve Genetic Diversity. Proceedings of the 
2002 Congress on Evolutionary Computation, pp 783-788 (2002) 

7. Lima, C.F., Sastry K., Goldberg, D.E., Lobo, F.G.: Combining competent crossover and 
mutation operators: A probabilistic model building approach. Proceedings of the 2005 
conference on Genetic and evolutionary computation, pp 735 – 742 (2005) 

8. Deb, K.: Current trends in evolutionary multi-objective optimization. International Journal 
for Simulation and Multidisciplinary Design Optimization, pp1-8 (2007) 

9. Schmidt, M.D., Lipson H.:Co-evolution of Fitness Maximizers and Fitness Predictors. 
GECCO Late Breaking Paper, (2005) 

10. Kim,E., Cho, S. , An efficient genetic algorithm with less fitness evaluation by 
clustering.Proceedings of the 2001 Congress on Evolutionary Computation, volume 2, pp 
887–894 (2001) 

11. Aparício J.N., Correia, L., Moura-Pires, F.: Populations are Multisets-PLATO. GECCO 
1999, pp 1845-1850 (1999) 

12. Aparício J.N., Correia, L., Moura-Pires, F.: Expressing Population Based 
OptimizationHeuristics Using PLATO. EPIA 1999, pp 367-383 (1999) 

13.Blizard, W. Multiset Theory. Notre Dame Journal of Formal LogicVolume 30, Number 1, 
Winter (1989). 

14. Wagner,S.,Affenzeller,M:The Allele Meta-Model - Developing a Common Language for 
Genetic Algorithms. Artificial Intelligence and Knowledge Engineering Applications: A 
Bioinspired Approach, Lecture Notes in Computer Science 3562, pp. 202-211. Springer-
Verlag (2005) 

15.Manso,A. ,Correia,L.: MUGA (MultiPopulations Genetic Algorithm) - Intelligent Systems 
Demonstrations Event, EPIA (2005). 

16. Mitchell, M.: Introduction to Genetic Algorithms, 5ª ed. MIT Press, pp 94-98 (1998)  
17. Jong, Keneth A. de: Evolutionary Computation - A unified approach, The MIT Press, pp 

163 (2006) 
18 Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 2rd extend 

Edition  Springer-Verlag pp. 36 ; pp 80 (1996) 
19 Singh, G, Deb, K.: Comparison of multi-modal optimization algorithms based on 

evolutionary algorithms, Proceedings of the 8th annual conference on Genetic and 
evolutionary computation, pp 1305 – 1312 (2006) 

20 Evolutionary Computation Benchmark Repository- Fifty item Knapsack Problem,  
http://www.cs.bham.ac.uk/research/projects/ecb/  (July , 2009) 

21 Ochoa, Gabriela. Error Threashold in Genetic Algorithms, Evolutionary Computation 
Journal,  MIT Press; pp. 157-182 (2006)   

 


