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Abstract. The traditional representation of the populatiossed in evolutionary
algorithms raises two types of problems: the Idsgenetic diversity during the
evolutionary process and evaluation of redundadividuals. In [11, 12] the
authors propose a new formal model (PLATO) for iett representation of
individuals and their populations which applied keuristic algorithms,
minimizes the problems identified above. This pgm@&sents a computational
representation of populations based in multisetsl the adaptation of the
genetic algorithm to deal with this type of repraagion, the Multiset Genetic
Algorithm (MGA). A new operator called rescalingdsveloped as well as a
metric to measure genetic diversity. The standamktic algorithm is applied
to some types of problems using the standard amahéfw type of populations
and empirical results shows the genetic diversitpéreased and the number of
individuals evaluated is decreased as expected.
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1 Introduction

Evolutionary algorithms (EA) are stochastic methdHat mimic the process of
biological evolution and have become popular téoisearch, optimization, machine
learning and design problems [1]. When applyings¢halgorithms to complex
problems where the search space is complex the fmegtient difficulty is the
premature convergence of the algorithm due toabk of genetic variety. Individuals
with better fitness propagate their genes in swgieesgenerations leading to a
premature convergence [2]. Genetic diversity i®msal to the evolutionary process,
and without it the EA stops at least good solutiespecially in problems that have
more than one solution (multi-modal optimizationy @volve simultaneous
objectives, multi-objective optimization.

Several strategies have been proposed to maintietig diversity at different
stages in the evolutionary process: Selection wittak pressure to fithess like
uniform or tournament selection methods; Reproduactpromoting the attraction
between elements of different individuals or usiotper reproductive intelligent
operators; Mutation with several adaptive operat@sbstitution: promoting the



replacement of individuals with similar genotypasd better fitness [2, 3, 4, 5, 6, 7,
21]. EA have revealed potential to reach good lzaarnin order to find a good set of
solutions with limited computational power. The mahance of many good solutions
in parallel is desirable and good algorithms hagerbdeveloped for the clearing,
clustering, crowding, fitness sharing and specmafi®].

The efficacy of the EA is directly related to thieesof the population. However, in
some applications, the evaluation of a large nunolbéndividuals is computationally
expensive and delays the evolutionary process. ihimize this problem we find in
literature some solutions: saving the objectiveugabf individuals in the databases,
estimating the ability of individuals using similaystems and prediction of fitness
[9,10].

All strategies above are improvements to the oaigatgorithm, which require the
redefinition of the operators and all have an iasesl computational cost. In [11, 12],
the authors introduce a new formal model using dbacept of multiset for the
representation of populations. This model allovesrisolution of two problems listed
above: maintaining the genetic diversity and avajduperfluous evaluations. In [15]
the authors show a software prototype, based isetlideas and applied to Genetic
Algorithms (GA). This paper describes the adaptatibthe GA to a multiset based
population, also introducing a new operator callescaling. This variant is called
Multiset Genetic Algorithm (MGA). Empirical resulshow that the MGA produces
higher genetic diversity and smaller number of eatibns than the same GA using
simple population (SP). The diversity was calcualby two measures of genetic
diversity.

2 Multisets and Multipopulations

A multiset is a collection of elements which maypear repeated. The number of
times an element occurs in a multiset is calledritstiplicity. The cardinality of a
multiset is the sum of the multiplicities of iteeatents [13]. We can define a multiset
as a set of ordered pairs <n,e> where n is theiraity of the element e. In this
definition the set {a,a,a,b,b,c} has an equivalaefpresentation in multiset
{<3,a>,<2,b><1,c>}.

EAs are based on populations of individuals in fitven of collections. In the
traditional representation it is common to haveesgpd individuals within the
population (Table 1). This can be efficiently reggeted by a multiset (Table 2).
Multipopulations (MP) are populations where the iidbals are represented by
ordered pairs <n,g> where n is the number of copi¢ke genome g. To this ordered
pair we call multiindividual (MI), and a MP is atsef Mls with humber of copies
greater than zero. The set of g in a MP is called qupport of the MP. In case of
Table 2 we have a support set with four elementgiqa that all of them have
different genotypes).

Populations are dynamic collections where individwae inserted, removed and
searched. To implement MP we must redefine these thperations in the traditional
data structure to support MI.



e Search - an MP is a set of individuals, grouped in MI, alhican be
indexed. The index of an individual is defined asiage from the sum of
the multiplicity of all previous MI to this valuedded of the own
multiplicity (Table 3). Searching an individual searching one index in
the population. This index is very important to ntain the equivalence
between the MPs and the normal populations (SP)essecy for
performance comparisons.

Table 1. Population with 8 individuals of Table 2. Multi-Population equivalent of
the problem MaxOnes. the population represented in Table 1.
Genotype Fitness Copies Genotype Fitness
11111110 7 3 11111110 7
11111110 7 2 11110000 4
11111110 7 2 00001110 3
11110000 4 1 00000010 1
11110000 4
00001110 3
00001110 3
00000010 1

Table 3. Indexing Multiindividuals in the Multipopulation dfable 2.

Copies Genotype Fithess Indexes
3 11111110 7 0,1,2
2 11110000 4 3,4
2 00001110 3 5,6
1 00000010 1 Il

¢ Insert - when an individual is appended to the MP, th& fiperation is to
check if there is already a MI with the same gepetyif true this
operation increases the number of copies of théoNticorporate the new
individual, if false the individual is inserted ihe population and the
number of copies is one (Table 4).

Table4. Append the individual “11111110” and “000000060the MP of the Table 3.

Copies Genotype Fithess Indexes
4 11111110 7 0,1,2,3
2 11110000 4 4,5
2 00001110 3 6, 7
1 00000010 1 8
1 00000000 0 9




* Remove — the elimination of an individual of one MP is rdo
decrementing the number of copies of the MI. If thenber of copies decays
to zero, the Ml is removed from the data struc{iable 5).

Table 5. Remove the individual at the index 7 (“00001118Md the individual “00000010”
(index 8) in the MP of the table 4.

Copies Genotype Fitness Indexes
4 11111110 7 0,1,2,3
2 11110000 4 4,5
1 00001110 3 6
1 00000000 0 7

Appending and removing individuals in the MP progkicone search for the
individual genotype into the MP, incrementing themputational complexity to the
evolutionary process. To minimize this issue th&addructures to support MP must
be efficient in search, not only to select indivath) but also to add and remove them
from the MP. Random access is another importarecdpr the implementation of
some genetic operators.

Genetic Diversity

Genetic diversity is based on the Hamming distametsveen individual genotypes.

This measure between two bit strings returns thrabmaun of bits that are different in

the genotype representations. By applying the ganneiple to the entire population

we can calculate the Hamming distance of an ind&didn relation to the population

as the sum of Hamming distances between it andhall other elements of the

population. The genetic diversity of the populatisrgiven by the sum of Hamming

distances of the individuals that compose it. Windea measure called the genetic
diversity consisting on a normalized form of thenkiaing distance for binary strings.

It can be efficiently computed as

o 4 @

genetic _ diversity :HZIq(n—K),
i=0

wherel is the number of bits of each individullthe number of ones of the allela
the population andh the population size. The maximum diversity is tfen the
percentage of alleles for each gene is 50%, andchthienum diversity is 0.0 when all
genes have the same value. This measure produnéarsiesults topop_diversity
[20] but is computationally more efficient and @wrmalized to interval [0, 1].

Different alleles

The number of different alleles in the populatisrahother diversity measure, which
calculates the amount of genes that are not firetthé population [14]. This metric



can measure the ability of a population to expltre search space through the
recombination operator.

The maximum diversity is obtained when the popatatias different alleles in all
the genes and the minimum value is obtained whHethalgenes have the same value
overall the population, which means all individuats identical.

Equation (2) shows the normalized form of the measu
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wherel is the number of bits of each individual amds zero if all the alleles of the
genei have the same value and one otherwise.

3 Adaptation of the Genetic Algorithm to Multi-Populations

The simple GA (SGA), when using the MP and the itiaull operators, benefits
automatically of the reduced number of evaluatiand increased genetic diversity.
The number of evaluations is decreased becausectregvaluate many individuals
at once (one multiindividual), and the genetic déity of the population is increased
because all the Ml in the support set have diffegemotypes.

The individuals with best fitness increase theimber of copies in successive
generations. If this number of copies is not cdlgdbthe benefits of the MP may be
decreased due to the huge number of copies ofasteitdividuals. We can adapt the
common EA operators to this new representation,ablighter intervention can be
considered by just introducing a new operator. Wilsallow us to compare results
of the SGA with the Multiset Genetic Algorithm (MGA

Rescaling

To control the number of copies of the individuats adapted the schema defined in
[11, 12] and introduced a new operator in the genatocess: rescaling (Fig. 1).
Rescaling is a population operator that changesniimaber of copies of a Mi
preventing it from taking over population. We diithe number of copies of each
individual by a factor and assign the num of copies to the smallest intdg is
greater than the division. Fig. 2 shows the eftét¢he operator in a population of 128
individuals of the problem Maxones over 250 genenst

With the factorr equal to 1.0 the number of individuals grows irccassive
iteration. This is due to keep constant the nunafevl in the population where the
fittest individuals accumulate copies in the eviolwary process. Higher values iof
stabilize the number of copies of good individu&sperimental results show that the
value of 1.5 to factor it's a good compromise between number of indivisliend
number of Ml in the population.



—>| Selection |—>| Reproduction'—

A 4

QO

4

A

Mutation

Y
—| Rescalini |<—| Replacemel |<7

Fig. 1. Optimization Algorithms Operators

In the first steps of the evolution the numberrafividuals increases more slowly
because there is no individual with greater fitnthss the others, and the number of
copies is small.
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Fig. 2 Effect of rescaling in the number of individualstiire population

4 Empirical study

In our empirical results we use the MUGA simuldtids] to show the effect of MP in

the evolutionary process in comparison to SP. Tasuke the effect of the MP in the
evolutionary process we use standard GA operatrsvblve the two types of

populations: SGA — GA that evolve simple populataod MGA — GA that evolve

multipopulations. The parameters of the GA are efjuahe two types of models and
are displayed in Table 8.



Table 8. Parameters used for SGA and MGA except rescatinty {n MGA).

Population size 128 individuals or multiindividuals
Mate population size 128 individuals

Selection Binary tournament

Combination Crossover 1-cut point, probability =75%
Mutation Bitwise mutation with probability =1%
Replacement Binary tournament with no reposition
Rescaling Factor = 1.5

Iterations 2500 generations

We use three functions to investigate the effedfiBf Royal Road Function R1 [16],
Knapsack [20] and MZ1 [18]. We perform 64 runs éach problem. In each one a
new random population is generated and assignbdttoMGA and SGA. The results
presented below are the arithmetic means of the performed.

Royal Road Function R1
This function is designed to investigate, in detasichema processing and

recombination [16]. It uses a 64 bit string. Itusimodal and the search space is
organized in steps with constant size.
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Fig. 3 - Average of number of optima found Fig. 4 - Average of value of best individual
by generation. found by generation.

This function has one maximum and it is hard tecal®r with no genetic diversity.

MGA found the solution 90.6% of the runs and SGAnfd the optimal solution 7.8%

of the runs (Fig. 3, Fig. 4 ). Fig. 5 and Fig. ®wshthe population diversity (different

alleles and genetic diversity). The diversity of tIiSGA is good because the
population does not converge and there are maral naxima. MGA has a higher

diversity, explained by the constant size of thppsut set. This genetic diversity in

SP eventually generates the best solution but itenaions are necessary. If we take
all tests up to 2500 generations we notice the murabevaluations in MGA (22700)

is lower than in SGA (29500) (Fig. 7). The numbéingividuals in MGA stabilizes



in 166 after a few generations (Fig. 8). In theibemg of evolution the number of

individuals increases because there are many toaalma with the same fitness. In
each higher fitness plateau the number of localimaxdecreases which leads to the
stabilization of the number of individuals in a sl@avalue.
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Knapsack is a well know NP-complete combinatoriafimization and we use it to
show the effects in combinatorial optimization gdeshs. We implement the problem
presented in [20]. The maximum capacity is 50%hef tbtal height and penalization

is done by the linear function of [18].

Experimental results show that the problem hasastlfour maxima with the best

value known of 1920:
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Fig. 9 - Average of number of optima found Fig. 10 - Average of value of best individual

The MGA always found four optimum solutions (Fig.&hd the SGA found one
optimum 67.1% of the runs. In both simulations adysolution is found. The mean
of the best values for SGA is 1915.4 and for MGA9R0 (the best known) (Fig. 10).
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Fig. 11 - Average of number of different
alleles of the population by generation.

Fig. 12 - Average of genetic diversity by

generation.

The number of different alleles (Fig. 11) and gendiversity (Fig. 12) in SGA
converge to zero while in MGA they converge to adjoatio: 41.9% of different
alleles and 18.7% of genetic diversity. This ladkgenetic diversity explains the

higher in SGA and the number of individuals in MG#abilizes in 226. The higher
number of individuals is explained by the numbethef optima found by the MGA.




MZ1

MZ1 [18, pp. 36] is a bidimensional function defihim a continuous space and we
use it to show the effect of MP in numerical optiation based in real numbers coded
in binary strings. The fitness function is desadib®y equation 3. Variable;xs
defined in the interval -3.8 x;<12.1 and coded by 18 bits and variablésxdefined

in the interval 4.X x,<5.8 and coded by 15 bits.

MZ1(x,,X,) =215+ x, Sin(47,) + X, Sin207x,) . ®)

average of best fitness

average of number of individuals

Fig. 13 - Average of number of optima found Fig. 14 - Average of value of best individual
by generation. found by generation.
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We notice that the results of MGA in this probleme anot as good as in the
previous ones. Optimization of complex functions dificult for SGA due to
premature convergence of the population. In MGA aleo notice premature
convergence (Fig. 13 and Fig. 14), in spite of¢bastant population diversity (Fig.
15 and Fig. 16). This is due to the fact that MGwerges to a local maximum and
uses the genetic diversity to form a cluster araunthe number of individuals in the



MP stabilizes in 338, which is a high number rasgltfrom many MI with similar
high fitness.

5 Conclusion

In this paper we present an implementation of G&waopulations represented by
multisets, named Multiset Genetic Algorithm (MGA)his model introduces a new
operator called Rescaling, to allow a comparisotween MGA and the Simple
Genetic Algorithm (SGA). We performed experimetsletermine an adequate value
for the division factor parameter of the new oparatA metric called genetic
diversity, implementing in an efficient way a noilimad Hamming distance was
proposed to evaluate the performance of the diftemodels.

We conducted a series of tests in different probleim determine the behavior of
the MGA during the evolutionary process and to carapthe results with the SGA.
The number of evaluations in MGA is lower than B/in all the tests. MGA has
the largest genetic diversity in all situationsisThelped to reach the optimal solution
in Royal Road Function R1 and to find and maintiifferent optimal solutions in the
knapsack problem. MGA in MZ1 problem did not getulés as significant as in the
other problems, but showed some directions to Volla the future. The cluster
around a local maximum takes the entire genetierdity through bits with little
significance to the global optimum. The conceptnaidltiindividual (MI) can be
redefined with the incorporation of metrics thdbal a single Ml to represents similar
genotypes instead of a single one. Some metricBeng study and will be subject to
investigation in the near future.

This work presents the impact of MGA in a optimiaat process using
conventional genetic operators. The standard gemgterators could be redefined,
and new ones can be developed take to advantape oumber of copies of the MI.
Some operators have already been adapted and esenprin MUGA[15]. In the
future they will be subjected to analytical treatn® determine their efficiency.

The use of multipopulations involves a computaticaféort grouping individuals
in a MI. Efficient data structures that suppori@éint search and random access to
the individuals will be researched to minimize toenputational effort.

The results of the experiences reinforce our cdioric that a multiset
representation of the population is a powerful waypreserve genetic diversity, to
avoid superfluous evaluations and, therefore, tgnitantly improve the
performance of GA.
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